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Abstract — Thread level parallelism (TLP) aware policies try to 
mitigate effect of cache contention in a heterogeneous 
architecture. This paper describes the motivation, design and 
results of our implementation of replacement policies in GPGPU-
Sim in order to create a baseline for simulating performance in 
heterogeneous architecture. We implement SRRIP, BRRIP and 
LFU policies in GPGPU-Sim and noticed that the LFU policy 
performs similar to LRU since the aging algorithm implemented is 
quite aggressive. SRRIP and BRRIP perform better for cache-
friendly workload but lose out in memory intensive benchmarks. 
The LFU policy without aging was not able to match LRU in most 
cases in terms of miss rate; hence aging was introduced in LFU 
replacement policy. 

I. INTRODUCTION 

Caches are critical shared resources in any processor 
architecture as they subside the long latencies of memory 
accesses. Classic cache management policies work fine with 
single core architecture but attention is needed while 
implementing them on GPGPU type architecture. Different 
policies were proposed keeping in mind different factors 
affecting application throughput. This project aims at 
implementing one such policy [5] called Re-reference Interval 
Prediction Policy cache management. LFU is also implemented 
and studied to compare the relative performances on different 
benchmarks. 

Shared resources in heterogeneous architecture include 
shared LLC, DRAM controller, front side bus and prefetching 
hardware. However, in recent processor designs, the 
prefetchers have been made private and are located at L2 cache 
and the DRAM controllers are moved on die and are more 
sophisticated thereby reducing the sharing effects [2]. LLC 
management thus, is of key importance as it significantly 
affects performance of the application as well as overall system 
throughput. GPGPU applications tend to have much higher 
memory access rates in the order of 300 requests per kilocycles 
than the existing CPU applications and although the memory 
latencies are handled by thread level parallelism in GPGPUs, 
their higher access rate may mar the performance of concurrent 
CPU applications due to cache pollution [1]. Existing cache 
management policies when implemented on GPGPUs result in 
non-temporal data storage leading to degraded cache 
performance. Promotion based cache management schemes are 
adopted to alleviate this problem.  

RRIP, which is a type of promotion, based cache 
management, approximates the accesses as near, long or distant 
future and tries not to replace lines, which are predicted to be 
reused in the near future. It is made highly resistant to non-
temporal access patterns and thrashing applications by 
assigning shorter lifetime to each cache block and then 
promoting them to higher order only upon hits. There are two 
flavors of this proposed RRIP [5], first is SRRIP i.e. static 

RRIP and the other is BRRIP i.e. bimodal RRIP. In SRRIP, 
each new incoming block is inserted at a position with RRPV 
(Re-reference prediction value) of 2n-2, where n is the cache 
associativity, while for BRRIP it is inserted at 2n-2th position 
with a probability of 5% and for the remaining cases the 
incoming block is inserted at 2n-1 position. RRIP then 
dynamically selects any of these two policies based on the 
application’s performance. LFU on the other hand, maintains a 
counter per block which gets incremented upon hit to check 
access frequency. 

II. RELATED WORK 

RRIP [5] i.e. RE-Reference Prediction Interval Policy and 
UCP [6] i.e. Utility based Cache Partitioning were introduced 
to overcome the problems faced by existing LRU policy. RRIP 
works out the solution for bad cache performance under 
thrashing applications or applications using large working set 
while UCP enables high cache performance for concurrent 
applications with very low overhead. While both these policies 
are meant to improve shared cache performance, they fail to 
serve the very purpose when implemented on heterogeneous 
architecture like on chip CPU-GPGPUs. Such a hetero-
architecture needs to address two main problems: 1] Cache 
unfriendliness of some GPGPU applications 2] Cache 
Interference introduced by GPGPU applications. These two 
problems can be solved to some extent by TAP-UCP and TAP-
RRIP, proposed by Lee & Kim [1], which are TLP (thread level 
parallelism) aware versions of UCP and RRIP mentioned 
before. 

These TAP versions use Core Sampling (to verify cache-
friendliness of GPGPU applications) and Cache Block Lifetime 
Normalization (to take access frequency gap between CPU and 
GPGPU applications into account) techniques to modulate the 
cache usage of GPGPU applications which run concurrently 
with on chip CPU applications, based on the performance data 
which is generated periodically. While TAP-UCP partitions the 
cache space among different applications after arbitrating 
through various possible optimal solutions, TAP-RRIP 
dynamically adapts between SRRIP and BRRIP schemes to get 
optimal performance. In order to aid analysis of the TAP 
policies using GPGPU-sim, the baseline policies have to be 
introduced in the source code. We made the necessary changes 
to provide three selectable cache replacement policies namely, 
LFU, SRRIP and BRRIP. 

III. SIMULATOR INFRASTRUCTURE 

The specifics of how GPGPUSim v3.2.0 implements the 
cache hierarchy in GPU’s, is described in this section. gpu-
cache.h implements all the caches used by the ldst_unit (load 
store unit). Fig 1 shows the hierarchy. 

1) cache_t 



A high level cache that just declares the virtual “access” 
function.  

2) baseline_cache:  
This class implements the basic cache functionality. It 
contains functions like: 

- fill() 
- waiting_for_fill() 
- access_ready() 
- flush() 
- print(), accesses and misses 
- display_state() 
- get_data_stats() 
- Note: Each of the subclasses implement their own 
“access” function. Hence it is a    virtual function in this 
class 

3) read_only_cache:  
This class inherits from baseline_cache. It’s just a container 
class.This just has a virtual function defined for “access”. 

4) data_cache: 
Again this class inherits from the class baseline_cache. It 
implements the common functions for L1 and L2 caches. The 
various functionalities offered by this class are as follows: 

-  Functions for read/write hit/misses. 
- Depending on the configuration, WriteHit Writeback, 

WriteHit WriteThrough, WriteMiss Allocate, WriteMiss 
NoAllocate. 

5) l1_cache 
This class is inherited from data_cache. It implements the 
“access” functionality. This is the same function that was 
declared as virtual in the class baseline_cache. 

6) l2_cache 
Again this class is inherited from the class data_cache. It 
implements the “access” functionaluity that was declared as 
Virtual in the class baseline_cache. 

7) tex_cache 
Implements the texture cache. Inherits directly from cache-t. 
Models the functionality associated with Texture caches.   

        Figure 1: Cache Hierarchy in GPGPU-Sim 

Additional details: 
The gpu-cache.h file implements various struct’s, 

enumerations  for modelling the cache. The enums’s are as 
follows. The naming signifies the use of the enum. 

1. cache_block_state 
2. cache_request_state 
3. cache_event 

4. replacement_policy_t 
5. write_policy_t 
6. allocation_policy 
7. write_allocate_policy 
8. mshr_config_t 

The actual values that are enumerated are clearly name and 
can be found in the gpu-cache.h file. 

The supporting structs and classes that are used are as 
follows. 

• struct cache_block_t 
Contains all the specifics related to a cache block. 

• class cache_config 
Has the specifics regarding the cache configuration, 
replacement policy, write policy, allocation policy, etc. 

• class tag_array 
An array of cache_block_t’s 

• class mshr_table 
Miss status handling register 

There are two major functions in the implementation of 
caches in GPGPUSim. 
1. probe() 

checks for a block address without affecting the LRU 
position counters/timestamps. 

2. access() 
models a lookup that affects the LRU positioning counter. 

Miss Status handing register (MSHR): 
MSHR's are modeled with the mshr_table class emulates a 

fully associative table with a finite number of merged requests. 
Reques t s a re r e leased f rom the MSHR th rough 
thenext_access() function. 

Other details: 
The read_only_cache class is used for the constant cache and 

as the base-class for thedata_cache class. This hierarchy can be 
somewhat confusing because R/W data cache extends from 
theread_only_cache. The only reason for this is that they share 
much of the same functionality with the exception of the access 
function which deals has to deal with writes in the data_cache. 
The L2 cache is also implemented with the data_cache class. 

The tex_cache class implements the texture cache outlined 
in the architectural description above. It does not use the 
tag_array or mshr_table since it's operation is significantly 
different from that of a conventional cache. 

IV. CODE IMPLEMENTATION 

Changes were done in the files “gpu-cache.cc” and “gpu-
cache.h”, in order to implement LFU, SRRIP and BRRIP 
policies. Other source files in gpgpu-sim src directory 
instantiate caches and use the policies, which are implemented, 
in the files we modified. Hence, a thorough understanding of 
the files/caches which relied on these policies and 
configuration options was necessary in order to extend current  



 

Figure 2: Benchmark Results 

policies. Entries for new replacement policies were registered in the replacement_policies_t enumerated data type. 

The write_policy_t enumerated data type uses switch case 
statements to decipher selected eviction policies after parsing 
the “gpgpusim.config” file. Hence, options to select the new 
policies were introduced here. The policy selection is now done 
using the following keywords: 

L   LRU 
F   FIFO 
S   SRRIP 
B   BRRIP 
H   LFU 

A. SRRIP 
A variable m_rrvp was introduced in the cache_block_state 

to aid the decision making for RRIP policies. This variable is 
initialized to maximum possible integer value. The change 
done to select an eviction candidate based on newly introduced 
policies is the probe function. Under SRRIP and BRRIP, the 
cache line with maximum RRVP is selected for eviction. The 
RRVP of all other lines is updated to a new RRPV value based 
on the difference between maximum RRPV value and (2assoc–
1). A cache line that hits gets it’s RRPV value updated in the 
access function.  

B. BRRIP 
Since BRRIP inserts a new cache line in the 2assoc - 2 

position with a low probability (usually 5%) and at 2assoc -1 
position otherwise, a global macro for the probability selection 
was included in the header file. In order to generate boolean 
values with the required probability a function nextBool [4] 
was used which employs the rand function and RAND_MAX 
variable defined in the stdlib header. Replacement and updating 
values of RRPV variable is done similar to SRRIP. 

C. LFU 
Recording the hit rate for each line requires introducing a 

variable m_hits in the cache_block_state enumerated data type. 
Previously implemented policies (LRU and FIFO) used the last 
access time or allocation time in order to identify block eligible 
for eviction. Hence, no existing counters could be reused. The 
m_hits variable is initialized to zero. LFU policy selects the 
block with least number of hits for eviction. If multiple blocks 
have same number of hits then the LRU policy or the 
timestamp is used to determine the candidate for eviction. The 
hit count for a block is updated in the access function.  
Additionally, in the access function, total hits for each line in a 

particular set is reduced by half at every access. This is done in 
order to implement ageing and avoid highly referenced stale 
blocks becoming resident in sets, which might degrade 
performance. 

V. RESULTS AND ANALYSIS 

We ran five different workloads in GPGPU-sim with the 
newly introduced policies. Configurations corresponding to 
NVIDIA GeForce GTX 480 were used for the benchmark runs. 
IPC is used to determine performance improvement in 
heterogeneous systems. However, since the replacement 
policies are being introduced and tested only for GPGPU, L2 
cache miss rate was used to determine efficiency of new 
policies. 

Table 1 shows the baseline configuration used in our 
experiments. We model the proposed replacement policy on 
GPGPU-Sim v3.2.0 with GPUWattch enabled. 

The results that were obtained are shown in Figure 2. 

From the results, we can observe that for cache sensitive 
applications/loads (e.g. RAY), RRIP works better than other 
policies. Whereas the other benchmarks are not cache sensitive 
and we observe that there is not much benefit over LRU for the 
different policies. And one more important point to note is that 
LFU policy implemented without aging consistently performs 
worse than all other benchmarks. Also, we believe that the LFU 
with aging has been implemented with a very aggressive aging 
policy. Thus its performance is very comparable to LRU. If the 
aggressiveness in aging algorithm were to be reduced, we 
believe that it could perform better than LRU. Overall we 
believe that CPU last level cache management policies can be 
translated to GPU’s and that GPU’s will benefit from these 
policies in case of workloads that are cache sensitive. 
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VI. FUTURE WORK 

The replacement policies were modeled and tested for 
benchmarks from various categories.  However, further detailed 
benchmarking on other varied benchmarks can be performed to 
reinforce the results. The essence of our approach is that the 
Last level GPU cache (here the L2 cache) can be viewed as a 
shared resource between the various GPU cores (SM’s). Hence 
logically, the replacement policies that are applied to shared 
CPU LLC’s should provide better results than the simple LRU 
policy. For this purpose, we implemented LFU, SRRIP and 
BRRIP. The next logical step would be to implement a Policy 
selector mechanism that would monitor the performance of the 
GPU under all of these different policies and then select one 
policy, which would work best based on monitored values. This 
would involve having monitors on each of the GPU cores, 
running different cores on different policies and then selecting 
the best performing policy. 

VII. CONCLUSION 

With multi-cores and heterogeneous architectures becoming 
ubiquitous in computing, concurrent execution of many 
applications has become quite popular.  This causes contention 
for shared resources. Since the on-chip LLC is at the periphery 
of resources on the multi-core processor, it is one of the last 
avenues to tackle majority of delays before the application 
issues a request to the slower main-memory. Researches have 
proposed policies such as UCP and RRIP for LLC management 
in multi-core systems. Another work that derives from these 
policies and targets heterogeneous architectures uses TLP 
aware mechanisms over UCP and RRIP. GPGPU-Sim, a cycle 

level GPU performance simulation currently provides FIFO 
and LRU cache replacement policies. In order to allow analysis 
of the newly proposed techniques in heterogeneous systems, 
replacement policies in GPGPU-Sim need to be extended. We 
introduced the policies SRRIP, BRRIP and LFU in current 
source code of GPGPU-sim and evaluate their performance 
using BFS, RAY, CP, LPS and the PA1 implementation. We 
conclude that LLC management policies can be used in GPU’s 
with some modifications and it will result in performance 
improvements for cache sensitive workloads. 
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