
 EXTENDING CACHE REPLACEMENT POLICIES
OF GPGPU-Sim (SRRIP, BRRIP, LFU)

Saurav Kumar, Bharat Kalyanaraman, Snehal Patil
Department of Electrical and Computer Engineering
North Carolina State University, Raleigh, NC, USA

Abstract — Thread level parallelism (TLP) aware policies try to
mitigate effect of cache contention in a heterogeneous
architecture. This paper describes the motivation, design and
results of our implementation of replacement policies in GPGPU-
Sim in order to create a baseline for simulating performance in
heterogeneous architecture. We implement SRRIP, BRRIP and
LFU policies in GPGPU-Sim and noticed that the LFU policy
performs similar to LRU since the aging algorithm implemented is
quite aggressive. SRRIP and BRRIP perform better for cache-
friendly workload but lose out in memory intensive benchmarks.
The LFU policy without aging was not able to match LRU in most
cases in terms of miss rate; hence aging was introduced in LFU
replacement policy.

I. INTRODUCTION

Caches are critical shared resources in any processor
architecture as they subside the long latencies of memory
accesses. Classic cache management policies work fine with
single core architecture but attention is needed while
implementing them on GPGPU type architecture. Different
policies were proposed keeping in mind different factors
affecting application throughput. This project aims at
implementing one such policy [5] called Re-reference Interval
Prediction Policy cache management. LFU is also implemented
and studied to compare the relative performances on different
benchmarks.

Shared resources in heterogeneous architecture include
shared LLC, DRAM controller, front side bus and prefetching
hardware. However, in recent processor designs, the
prefetchers have been made private and are located at L2 cache
and the DRAM controllers are moved on die and are more
sophisticated thereby reducing the sharing effects [2]. LLC
management thus, is of key importance as it significantly
affects performance of the application as well as overall system
throughput. GPGPU applications tend to have much higher
memory access rates in the order of 300 requests per kilocycles
than the existing CPU applications and although the memory
latencies are handled by thread level parallelism in GPGPUs,
their higher access rate may mar the performance of concurrent
CPU applications due to cache pollution [1]. Existing cache
management policies when implemented on GPGPUs result in
non-temporal data storage leading to degraded cache
performance. Promotion based cache management schemes are
adopted to alleviate this problem.

RRIP, which is a type of promotion, based cache
management, approximates the accesses as near, long or distant
future and tries not to replace lines, which are predicted to be
reused in the near future. It is made highly resistant to non-
temporal access patterns and thrashing applications by
assigning shorter lifetime to each cache block and then
promoting them to higher order only upon hits. There are two
flavors of this proposed RRIP [5], first is SRRIP i.e. static

RRIP and the other is BRRIP i.e. bimodal RRIP. In SRRIP,
each new incoming block is inserted at a position with RRPV
(Re-reference prediction value) of 2n-2, where n is the cache
associativity, while for BRRIP it is inserted at 2n-2th position
with a probability of 5% and for the remaining cases the
incoming block is inserted at 2n-1 position. RRIP then
dynamically selects any of these two policies based on the
application’s performance. LFU on the other hand, maintains a
counter per block which gets incremented upon hit to check
access frequency.

II. RELATED WORK

RRIP [5] i.e. RE-Reference Prediction Interval Policy and
UCP [6] i.e. Utility based Cache Partitioning were introduced
to overcome the problems faced by existing LRU policy. RRIP
works out the solution for bad cache performance under
thrashing applications or applications using large working set
while UCP enables high cache performance for concurrent
applications with very low overhead. While both these policies
are meant to improve shared cache performance, they fail to
serve the very purpose when implemented on heterogeneous
architecture like on chip CPU-GPGPUs. Such a hetero-
architecture needs to address two main problems: 1] Cache
unfriendliness of some GPGPU applications 2] Cache
Interference introduced by GPGPU applications. These two
problems can be solved to some extent by TAP-UCP and TAP-
RRIP, proposed by Lee & Kim [1], which are TLP (thread level
parallelism) aware versions of UCP and RRIP mentioned
before.

These TAP versions use Core Sampling (to verify cache-
friendliness of GPGPU applications) and Cache Block Lifetime
Normalization (to take access frequency gap between CPU and
GPGPU applications into account) techniques to modulate the
cache usage of GPGPU applications which run concurrently
with on chip CPU applications, based on the performance data
which is generated periodically. While TAP-UCP partitions the
cache space among different applications after arbitrating
through various possible optimal solutions, TAP-RRIP
dynamically adapts between SRRIP and BRRIP schemes to get
optimal performance. In order to aid analysis of the TAP
policies using GPGPU-sim, the baseline policies have to be
introduced in the source code. We made the necessary changes
to provide three selectable cache replacement policies namely,
LFU, SRRIP and BRRIP.

III. SIMULATOR INFRASTRUCTURE

The specifics of how GPGPUSim v3.2.0 implements the
cache hierarchy in GPU’s, is described in this section. gpu-
cache.h implements all the caches used by the ldst_unit (load
store unit). Fig 1 shows the hierarchy.

1) cache_t

A high level cache that just declares the virtual “access”
function.

2) baseline_cache:
This class implements the basic cache functionality. It
contains functions like:

- fill()
- waiting_for_fill()
- access_ready()
- flush()
- print(), accesses and misses
- display_state()
- get_data_stats()
- Note: Each of the subclasses implement their own
“access” function. Hence it is a virtual function in this
class

3) read_only_cache:
This class inherits from baseline_cache. It’s just a container
class.This just has a virtual function defined for “access”.

4) data_cache:
Again this class inherits from the class baseline_cache. It
implements the common functions for L1 and L2 caches. The
various functionalities offered by this class are as follows:

- Functions for read/write hit/misses.
- Depending on the configuration, WriteHit Writeback,

WriteHit WriteThrough, WriteMiss Allocate, WriteMiss
NoAllocate.

5) l1_cache
This class is inherited from data_cache. It implements the
“access” functionality. This is the same function that was
declared as virtual in the class baseline_cache.

6) l2_cache
Again this class is inherited from the class data_cache. It
implements the “access” functionaluity that was declared as
Virtual in the class baseline_cache.

7) tex_cache
Implements the texture cache. Inherits directly from cache-t.
Models the functionality associated with Texture caches.

 Figure 1: Cache Hierarchy in GPGPU-Sim

Additional details:
The gpu-cache.h file implements various struct’s,

enumerations for modelling the cache. The enums’s are as
follows. The naming signifies the use of the enum.

1. cache_block_state
2. cache_request_state
3. cache_event

4. replacement_policy_t
5. write_policy_t
6. allocation_policy
7. write_allocate_policy
8. mshr_config_t

The actual values that are enumerated are clearly name and
can be found in the gpu-cache.h file.

The supporting structs and classes that are used are as
follows.

• struct cache_block_t
Contains all the specifics related to a cache block.

• class cache_config
Has the specifics regarding the cache configuration,
replacement policy, write policy, allocation policy, etc.

• class tag_array
An array of cache_block_t’s

• class mshr_table
Miss status handling register

There are two major functions in the implementation of
caches in GPGPUSim.
1. probe()

checks for a block address without affecting the LRU
position counters/timestamps.

2. access()
models a lookup that affects the LRU positioning counter.

Miss Status handing register (MSHR):
MSHR's are modeled with the mshr_table class emulates a

fully associative table with a finite number of merged requests.
Reques t s a re r e leased f rom the MSHR th rough
thenext_access() function.

Other details:
The read_only_cache class is used for the constant cache and

as the base-class for thedata_cache class. This hierarchy can be
somewhat confusing because R/W data cache extends from
theread_only_cache. The only reason for this is that they share
much of the same functionality with the exception of the access
function which deals has to deal with writes in the data_cache.
The L2 cache is also implemented with the data_cache class.

The tex_cache class implements the texture cache outlined
in the architectural description above. It does not use the
tag_array or mshr_table since it's operation is significantly
different from that of a conventional cache.

IV. CODE IMPLEMENTATION

Changes were done in the files “gpu-cache.cc” and “gpu-
cache.h”, in order to implement LFU, SRRIP and BRRIP
policies. Other source files in gpgpu-sim src directory
instantiate caches and use the policies, which are implemented,
in the files we modified. Hence, a thorough understanding of
the files/caches which relied on these policies and
configuration options was necessary in order to extend current

Figure 2: Benchmark Results

policies. Entries for new replacement policies were registered in the replacement_policies_t enumerated data type.

The write_policy_t enumerated data type uses switch case
statements to decipher selected eviction policies after parsing
the “gpgpusim.config” file. Hence, options to select the new
policies were introduced here. The policy selection is now done
using the following keywords:

L LRU
F FIFO
S SRRIP
B BRRIP
H LFU

A. SRRIP
A variable m_rrvp was introduced in the cache_block_state

to aid the decision making for RRIP policies. This variable is
initialized to maximum possible integer value. The change
done to select an eviction candidate based on newly introduced
policies is the probe function. Under SRRIP and BRRIP, the
cache line with maximum RRVP is selected for eviction. The
RRVP of all other lines is updated to a new RRPV value based
on the difference between maximum RRPV value and (2assoc–
1). A cache line that hits gets it’s RRPV value updated in the
access function.

B. BRRIP
Since BRRIP inserts a new cache line in the 2assoc - 2

position with a low probability (usually 5%) and at 2assoc -1
position otherwise, a global macro for the probability selection
was included in the header file. In order to generate boolean
values with the required probability a function nextBool [4]
was used which employs the rand function and RAND_MAX
variable defined in the stdlib header. Replacement and updating
values of RRPV variable is done similar to SRRIP.

C. LFU
Recording the hit rate for each line requires introducing a

variable m_hits in the cache_block_state enumerated data type.
Previously implemented policies (LRU and FIFO) used the last
access time or allocation time in order to identify block eligible
for eviction. Hence, no existing counters could be reused. The
m_hits variable is initialized to zero. LFU policy selects the
block with least number of hits for eviction. If multiple blocks
have same number of hits then the LRU policy or the
timestamp is used to determine the candidate for eviction. The
hit count for a block is updated in the access function.
Additionally, in the access function, total hits for each line in a

particular set is reduced by half at every access. This is done in
order to implement ageing and avoid highly referenced stale
blocks becoming resident in sets, which might degrade
performance.

V. RESULTS AND ANALYSIS

We ran five different workloads in GPGPU-sim with the
newly introduced policies. Configurations corresponding to
NVIDIA GeForce GTX 480 were used for the benchmark runs.
IPC is used to determine performance improvement in
heterogeneous systems. However, since the replacement
policies are being introduced and tested only for GPGPU, L2
cache miss rate was used to determine efficiency of new
policies.

Table 1 shows the baseline configuration used in our
experiments. We model the proposed replacement policy on
GPGPU-Sim v3.2.0 with GPUWattch enabled.

The results that were obtained are shown in Figure 2.

From the results, we can observe that for cache sensitive
applications/loads (e.g. RAY), RRIP works better than other
policies. Whereas the other benchmarks are not cache sensitive
and we observe that there is not much benefit over LRU for the
different policies. And one more important point to note is that
LFU policy implemented without aging consistently performs
worse than all other benchmarks. Also, we believe that the LFU
with aging has been implemented with a very aggressive aging
policy. Thus its performance is very comparable to LRU. If the
aggressiveness in aging algorithm were to be reduced, we
believe that it could perform better than LRU. Overall we
believe that CPU last level cache management policies can be
translated to GPU’s and that GPU’s will benefit from these
policies in case of workloads that are cache sensitive.

Benchmark Results
M

is
s R

at
e

0

0.125

0.25

0.375

0.5

BFS_65536 PA1_8_64 RAY CP LPS Average

LRU
LFU(without ageing)
LFU(with ageing)
SRRIP
BRRIP

Type Configuration

GPU nVidia GTX480

L1 Cache 48kb, 32 sets, 128 kb block size, LRU

L2 Cache 786kb, 64 sets, 128 kb block size

VI. FUTURE WORK

The replacement policies were modeled and tested for
benchmarks from various categories. However, further detailed
benchmarking on other varied benchmarks can be performed to
reinforce the results. The essence of our approach is that the
Last level GPU cache (here the L2 cache) can be viewed as a
shared resource between the various GPU cores (SM’s). Hence
logically, the replacement policies that are applied to shared
CPU LLC’s should provide better results than the simple LRU
policy. For this purpose, we implemented LFU, SRRIP and
BRRIP. The next logical step would be to implement a Policy
selector mechanism that would monitor the performance of the
GPU under all of these different policies and then select one
policy, which would work best based on monitored values. This
would involve having monitors on each of the GPU cores,
running different cores on different policies and then selecting
the best performing policy.

VII. CONCLUSION

With multi-cores and heterogeneous architectures becoming
ubiquitous in computing, concurrent execution of many
applications has become quite popular. This causes contention
for shared resources. Since the on-chip LLC is at the periphery
of resources on the multi-core processor, it is one of the last
avenues to tackle majority of delays before the application
issues a request to the slower main-memory. Researches have
proposed policies such as UCP and RRIP for LLC management
in multi-core systems. Another work that derives from these
policies and targets heterogeneous architectures uses TLP
aware mechanisms over UCP and RRIP. GPGPU-Sim, a cycle

level GPU performance simulation currently provides FIFO
and LRU cache replacement policies. In order to allow analysis
of the newly proposed techniques in heterogeneous systems,
replacement policies in GPGPU-Sim need to be extended. We
introduced the policies SRRIP, BRRIP and LFU in current
source code of GPGPU-sim and evaluate their performance
using BFS, RAY, CP, LPS and the PA1 implementation. We
conclude that LLC management policies can be used in GPU’s
with some modifications and it will result in performance
improvements for cache sensitive workloads.

REFERENCES

1. Jaekyu Lee; Hyesoon Kim, "TAP: A TLP-aware cache management
policy for a CPU-GPU heterogeneous architecture," High Performance
Computer Architecture (HPCA), 2012 IEEE 18th International
Symposium on, vol., no., pp.1, 12, 25-29 Feb. 2012.

2. Aamer Jaleel, Hashem H. Najaf-abadi, Samantika Subramaniam, Simon
C. Steely, and Joel Emer. 2012. CRUISE: cache replacement and utility-
aware scheduling. In Proceedings of the seventeenth international
conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS XVII). ACM, New York, NY, USA,
249-260.

3. Ali Bakhoda, George Yuan, Wilson W. L. Fung, Henry Wong, Tor M.
Aamodt, Analyzing CUDA Workloads Using a Detailed GPU Simulator,
in IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), Boston, MA, April 19-21, 2009.

4. How to generate a boolean with p probability using c rand function.
http://stackoverflow.com/questions/3771551/how-to-generate-a-boolean-
with-p-probability-using-c-rand-function

5. A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer. High
performance cache replacement using re-reference interval prediction
(RRIP). In ISCA-32, pages 60–71, 2010.

6. M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches. In MICRO-39, pages 423– 432, 2006.

