
An Overview of Scheduling Policies Targeted at Improving
Performance/Efficiency in Multi-cores

Saurav Kumar
North Carolina State University 

ABSTRACT

With the need for higher performance, and barriers such as ILP
wall, Memory wall and Power wall, multi-core computers have
found their way into wide variety of applications in both user and
commercial domain. They offer more computing resources while
keeping the power considerations in manageable limits. A wide
variety of implementations exist in multi-core architecture include
SMP (Symmetric multi-processors) and AMP (Asymmetric multi-
processors) with heterogeneous systems as a subset of AMP.
Multiple challenges have cropped up due to the shift to concurrent
programming and widespread adoption of these systems. These
include shared resource contention, performance challenges,
energy efficiency, fairness and throughput. This paper compares
and contrasts recent solutions which have been proposed to
address these problems. The solutions which have been taken into
consideration include scheduling and related classification
schemes, hardware/software partitioning, PMU (performance
monitoring unit) assisted scheduling and work-stealing.

Categories and Subject Descriptors

D.4.1 [Operating Systems]: Process Management—Scheduling

General Terms

Algorithms, Management, Measurement, Performance, Design,
Reliability.

Keywords

Multicore processors, shared resource contention, scheduling,
Symmetric multicore, Asymmetric multicore, frequency scaling,
fairness.

1. INTRODUCTION

Multi-cores have long existed, ever since mid-1960s. However
due to the complexity involved in multi-core programming they
were largely used by the skilled engineers and scientists. Their
absence in mainstream systems and the increase in single core
complexity and component density based on Moore’s law made
multi-core systems expensive. Hence, they had a limited customer
base usually targeted at batch processing.

With the decline in transistor scaling and the hardware
development hitting ILP wall, memory wall and power wall, there
was a paradigm shift to multi-core computers. Multi-core offered
reduced power consumption for perfectly parallelizable
workloads. However, achieving ideal speedup is affected by
various factors. Based on the target hardware these solution have
been classified into two categories: Solutions for SMP systems
and solutions for AMP systems.

For SMP systems scheduling is proposed as one of the solutions
because it needs software changes, hence can be easily integrated
into current kernels. Implementations of new scheduling policies
which targets shared resource contention requires two steps: First
is identification of classification schemes for threads to indicate
what effect they have on each other due to shared resource
contention when co-scheduled. Here shared resource includes
cache, memory controller, memory bus and prefetching hardware.
Second is to devise a scheduling algorithm using one of the
classification schemes and demonstrate its performance ("DI
performs within 2% of optimal") [1]. Scheduling policies also
have effective impact at improving QoS (Quality of Service).
Another policy which aims at reducing the energy delay product
utilizes task activity vectors to classify applications based on
resource utilization. Accordingly, applications using
complementary resources are selected and frequency scaling is
used if scheduling is not able to properly manage the resource
contention.

Efficient HW SW partitioning technique has also been proposed
using scheduling and mapping algorithms. On similar lines
combination of both hardware and software has been employed in
solving the shared cache contention problem in multi-core
systems. The hardware can use modified replacement policies so
as to allocate cache on need basis for the applications. Since co-
scheduling decisions rely greatly on the underlying shared cache
replacement policies, the hardware/software approach is a nice
avenue for improvement. Balanced work stealing (BWS) is also
among one of the novel solutions which utilizes a work-stealing
scheduler for improving performance and fairness using two
methods. Firstly, it tries to balance the cost and benefits of threads
which are awake where costs are resources consumed when an
attempt to steal is made and benefits are the available tasks that
get stolen by the requesting thread.

Secondly, while making a steal attempt/request the core being
used by the attempting thread can be borrowed by another
working thread so that the core is effectively retained by the
application yet is used for performing work. BWS compared with
another work-stealing scheduler Cilk++ has been found to deliver
increased throughput by 12.5% and it reduces unfairness from
124% to 20% [6].

In case of AMP systems, the faster cores are usually used to
speed up sequential phases of applications and the slower cores
allow gaining energy efficiency for execution of the parallel
phases. Heterogeneous processor cores can be used with lottery
based scheduling policies to provide better performance and

Page of 1 6

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

energy savings over state-of-the-art heterogeneous-aware
scheduling techniques. This technique focuses mainly on energy
efficiency. CAMP or the comprehensive scheduler for AMP aims
at increasing both energy efficiency and throughput/parallelism.

The remainder of this paper is classified into following
sections: (2) SMP systems and scheduling policies aimed at
solving problems in these systems, (3) AMP systems and
corresponding scheduling solutions, (4) Comparison of different
techniques, (5) Acknowledgements and (6) References.

2. SMP SYSTEMS

Various scheduling policies aimed at reducing contention,
increasing performance and energy efficiency are discussed below

2.1. Distributed Intensity Scheduler (DI)

Majority of scheduling policies currently aim at ensuring fairness
in terms of CPU Time and minimizing the period for which
individual cores are idle. However, contention for shared
resources can greatly affect the execution time of individual
processes. In case of a shared lower-level cache, performance can
be improved if a better scheduling policy is selected, by as much
as up to 50%.

2.1.1. Classification schemes

The algorithm proposed by Jiang et al. [14] was used as a
reference to compare the performance of classification schemes.
This algorithm takes con-run degradations as one of the input and
is guaranteed to find an optimal scheduling assignment. In order
to evaluate the classifications schemes, an optimal schedule and
an optimal classification scheme were identified using Jiang's
method. The average performance degradation for this setup was
recorded. Then an estimated best schedule was determined using
Jiang's method and the classification scheme to be evaluated. The
difference between average performance degradation of optimal
and the evaluated scheme gave an idea of how the evaluated
scheme performs. The smaller the difference, the better is the
performance of the evaluated scheme.

Four classification schemes were studied which use information
provided in stack distance profile: Stack Distance Competition
(SDC) [11], Animal Classes [12], Solo Miss Rate [13], and the
Pain Metric [1]. A stack distance profile provides information
about the behavior of an application with respect to cache line
reuse pattern.

a. SDC: - SDC classification scheme models how two applications
affect each other’s miss rate while competing for LRU stack
positions. Performance degradation can be derived from this
information.

b. Animal classes: - based on mapping the application to four
different classes i.e. turtle (shared cache used rarely), sheep (has
low miss rate, insensitive to the cache associativity allocated),
rabbit (low miss rate, sensitive to allocated cache associativity)
and devil (high miss rate, does cache thrashing) the degradation
when two classes are co scheduled is rated between numbers 0
and 8. Then the combination with lowest result is selected and
scheduled.

c. Miss rate: Applications with highest miss rate are scheduled in
different caches so that they do not affect each other. Since, high
miss rate implies contention at memory controller, memory bus
and prefetching hardware.

d. Pain classification scheme: Two parameters i.e. cache
sensitivity and cache insensitivity are combined to produce Pain
metric. Sensitivity is how much cache space contention affects an
application. Insensitivity is how much an application affect others
by taking the cache space allocated in shared cache.

2.1.2. Scheduling policies and observations

A cache unaware scheduler might end up picking good and bad
assignments of processes to individual cores based on their
respective probabilities. However, contention-aware scheduler can
deliver QoS, since the algorithm ensures that a bad scheduling
assignment is not made.

As cores in a multi-processor increase, the probability with which
imperfect classification schemes get a good mapping decreases.
Hence, a good classification scheme is a pre-requirement for
reducing performance degradation in multi-core system.
Parameters affecting performance degradation include contention
for shared cache, DRAM controller, front side bus and prefetching
hardware. The Miss rate takes into account all of these and is
easiest among the 4 schemes to implement, hence was selected for
further study. Distributed Intensity algorithm (DI) based on
centralized sort policy which maps threads to cores based was
used along with the Solo LLC miss rate to compare performance
with current Linux scheduling algorithms

The performance of the new scheduling policies when compared
with default contention-unaware Linux scheduler showed that the
worst-case performance of individual applications gets reduced
(by up to 13%) and has lesser variance in competition times. This
enables the contention-aware scheduling to provide QoS and
performance isolation.

2.2. Scheduling Aimed at Energy Efficiency

Contention for resources affects both completion time of
programs and energy efficiency of the system. In order to avoid
hardware complexities, frequency and voltage selection across all
cores is majority of systems is kept same. However, frequency and
voltage are usually determined based on the program in order to
provide energy efficiency. In case of multi-core systems,
depending on the combinations of processes running of different
cores, not all of them run under optimal frequency. Hence, a
scheduler can be used to alleviate this problem. Tasks with
different characteristics can reduce resource contention, on the
other hand tasks with similar characteristics cater themselves to be
easily scheduled under optimal frequency.

Tests of AMD Opteron 2354 quad-core chip and Core2 Quad
Q6600 suggested that when memory bound tasks are co-scheduled
then no major benefit is gained by scaling the frequency for
optimal operating conditions. For further analysis the paper takes
EDP (energy delay product i.e. the product of energy spent by the
processor for a certain task multiplied by its total runtime) as a
metric of comparison. A run of four SPEC CPU 2006 micro
benchmarks on Core 2 Quad showed that memory bandwidth
turns out to be a critical resource when it comes to contention.
Tests indicate that combining tasks in order to reduce resource
contention is more important than combining tasks that share a
common optimal frequency.

In order to analyze resource utilization, task activity vector is used
where activity vector quantifies the degree at which various
resources are used by a particular task running at max frequency.
The values is this vector range between 0 (no utilization) and 1
(complete utilization). The performance monitoring unit of
processors provides information about the values for this vector.

Page of 2 6

Resources considered include memory bus, L2 cache and rest of
the core (resources not shared between cores) A translation vector
is used to compare the activity vectors recorded at different
frequencies.

Based on the activity vector information Vector balancing method
is proposed for reducing resource contention. The aim is to have
multiple tasks with different characteristics on each core so that
the scheduling policy can pick suitable tasks for each course. In
order to get high variance in the run-queues task migrations are
performed. Cross node (VM based) migration is also an addition,
however it will not be considered since it is out of scope for this
paper. The run queue is kept sorted lazily with low overhead and
the cores are grouped into pairs of two so as to allow executing
tasks with complementary resource demands. This scheme can be
in conflict with schemes applied for I/O bound tasks, hence is not
feasible for I/O intensive workloads. In situations where the
scheduling policy cannot reduce contention, frequency scaling is
employed to reduce EDP.

The final deployment on a Linux system of the above mentioned
strategies showed that the activity vector calculations did not have
any effect on total runtime for the SPEC benchmarks.
Additionally, co-scheduling tasks which have complementary
resource requirement reduces contention significantly.

2.3. Policies Requiring Hardware Support

2.3.1. Effective Hardware Software Partitioning

The Decisions regarding partitioning of a system into hardware
and software directly affect cost/performance characteristics of the
final design. A partitioning scheme can be used to reduce total
CPU time taken by a process.

Different tasks are categorized into nodes where each node is a set
of instructions which should be executed sequentially without pre-
emption. Dependencies are also taken into account to generate a
task precedence graph. A combination of scheduling algorithm
and converting tasks taking longest time to be implemented in
hardware instead of software (using FPGA) is used to provide
speedup. This also allows in identifying best architecture for a
given application.

2.3.2. Cache replacement and Utility aware
scheduling

Intelligent software scheduling approaches including the ones
which take miss rate from CPU performance measurement units
into consideration are one way of solving the LLC contention
problem. Another way for serving applications better is to monitor
the heterogeneity in demand for cache and use smart replacement
techniques in hardware to allocate proportional resources. A
combined approach can be explored for obtaining better
performance.

LRU based replacement has been shown to perform poorly when
it comes to shared caches. To avoid worst application schedule,
majority of the intelligent scheduling policies avoid co-scheduling
CPU bound application with memory bound application.
However, these studies use an LRU managed LLC. When the
LRU policy is replaced with smart cache replacement policies, the
performance variations for workloads reduce (<4%) hence the
benefit of using smart scheduling policies is not significant.

Effectively the smart replacement policies minimize burden on
software for reducing resource contention and increasing
performance. As compared to other policies which use colors,

animals or miss rates to classify applications according to their
memory intensity, CRUISE uses four new classes:

CCF (Core cache Fitting): applications which have a working set
that fits in their private cache.

LLCT (LLC thrashing): Similar to streaming applications which
have huge working sets

LLCF (LLC fitting): Need majority of the shared LLC and the
performance reduces as LLC allotment is decreased.

LLCFR (LLC friendly): They perform well as the LLC allotted is
increased however performance degradation is not significant
even if a major chunk of LLC is not allotted to them.

In order to gather information regarding application cache utility,
the applications can be periodically paused on a CMP to gather
information about cache use. However, this policy incurs extra
performance overhead. Hence a runtime isolated cache estimator
(RICE) is proposed which monitors cache utilization per
application based on Set Dueling Monitor (SDM). The SDM
dedicates few sets of cache to follow a certain policy, and then
uses the resultant cache misses. Hence, two SDMs are dedicated
per application and all other applications bypass these cache sets.

RICE however needs modification in the ISA to enable software
control. Using this information, a scheduling policy can be
devised based on the underlying LLC replacement policy. For a
LRU managed shared LLC the policy follows following rules
(CRUISE-L):

a. All LLCT applications are mapped on same LLC

b. CCF applications are distributed across LLCs

c. The LLCF applications are co-scheduled along with CCF

d. LLCFR applications are mapped to remaining places.

In case of DRRIP, a low overhead, high performance shared
cache replacement policy the scheduling steps are (CRUISE-D):

a. LLCT applications are distributed across all LLCs

b. CCF applications are also distributed across LLCs

c. LLCF and CCF/LLCT applications are co-scheduled

d. LLCFR applications are filled in remaining slots

When compared with random, Distributed intensity and Worst
application schedule policies, CRUISE significantly reduces
performance variation. In case when the workload consists of
mixes with high performance variation, CRUISE frequently
arrives at an optimal schedule. In both LRU and DRRIP managed
share caches, the performance variation using CRUISE lies below
5%. Both CRUISE-D and CRUISE-L are within 1% of the
optimal assignment schedule (OAS), in case of fairness and the
performance is similar to OAS when it comes to throughput and
weighted speedup. It proves to be robust across all metrics. The
CRUISE policy also proves to be quite scalable as it bridges
performance variation between OAS and WAS when a 4-core
system is scaled to 8-core system with proportional increase in
applications/threads outperforming all other policies taken into
consideration. However in case of lower workload, both CRUISE
and DI show degraded performance to within 5% when compared
with the WAS policy due to the cost of overheads.

The functioning of RICE was validated by reducing the LLC size
and analyzing behavior of working sets. It was found that cache
fitting or friendly applications were changed to cache thrashing or

Page of 3 6

fitting when the cache size was reduced and vice versa. Hence,
RICE responds to dynamic changes in available LLC size.

CRUISE tackles majority of problems faced by other policies. In
case of the DI policy, the authors suggest that the contention for
DRAM controllers and hardware pre-fetchers also account for
majority of the performance degradation. However, in recent
processor designs, the pre-fetchers have been made private and
are located at L2 cache and the DRAM controllers are moved on
die and are more sophisticated thereby reducing the sharing
effects in case of a LRU managed cache. Other techniques like
software cache partitioning technique which allocates a certain
portion of cache to individual applications is complicated and
requires intricate changes in the virtual memory policies used by
the kernel. Software-centric algorithms which sample
performance data of threads and learn their behavior suffer due to
dynamic phase changes and their complexity increases with the
increase in number of threads. Hence, CRUISE is the most
feasible policy providing scalability and high performance for
SMP systems.

2.4. Work-Stealing Based Scheduling Policy

An aspect which comes into play in case of multi-programming is
a certain application spawning threads to make use of multiple-
cores. These threads are then scheduled based on the user-level
task scheduler. The tasks to be performed by the application are
distributed across multiple worker threads felicitating the
concurrent execution of the application. In such cases work
stealing proves to be quite effective when it comes to reducing
complexity of parallel programming. However, since an operating
system does not recognize the tasks of each of the worker threads,
wasteful threads might get scheduled which cause reduced
throughput. Additionally, when work stealing schedulers try to
alleviate this problem by introducing yielding for the wasteful
threads then this yielding causes loss of cores for the application
leading to reduced concurrency.

BWS (Balanced work stealing) tackles this issue by putting
wasteful threads to sleep based on data derived from OS. It wakes
up the threads when they are likely to contribute towards
application progress and allows yielding to another thread of same
application hence avoiding the application from being blocked for
a particular core.

In case of work-stealing a user level scheduler assigns tasks to
multiple worker threads. The workers which process and generate
tasks are called busy workers. Useful thieves distribute or yield
when a parallel task needs the processor. Wasteful thieves on the
other hand waste the resources in their successive work-stealing
attempts which turn out to be unsuccessful. Time slicing allows
core to be assigned to individual applications. However,
throughput depends on ability of an application to completely
utilize the allocated resources. Static partitioning relies on similar
application characteristics. Hence, work stealing can prove to be a
powerful tool which allows several applications to run
concurrently in a multi-core system.

Wasteful thieves are a major concern for work-stealing algorithms
and degrade the performance by 15%-350%. Current work-
stealing algorithms like ABP (proposed by Arora, Blu-mofe, and
Plaxton), cause unfairness when the thieves which yield are not
resumed so as to complete their work in time i.e. when they
transition from being wasteful to useful thieves and reduce
throughput when the thieves do not yield cores or yield cores but
are invoked frequently. The OS scheduling policies also affect this
indeterministic behavior of thief threads.

Based on runs of four benchmarks on 32 core machine it was
observed that co-scheduling two work stealing applications
increases throughput when compared with time-slicing
algorithms. However, an unyielding work-stealing scheduler
might degrade performance by as much as 600%. Hence in order
to aid support of work-stealing schedulers, support has to be
provided from the OS which is one of the implementations in
BWS.

BWS prioritizes busy workers and thieves yield to the busy
workers so that time slice given to a work-stealing application is
utilized intensively. The stealing costs are controlled by putting to
sleep/waking thieves. In cases where resources are plenty multiple
thieves can be woken up to increase efficiency/concurrency of the
application. The schedulers acquire running status of workers
from the OS and an additional support which enables the core to
be transferred to peer workers. With this implementation BWS
proves to be better than ABP when it comes to fairness, efficiency
and throughput.

 BWS uses the thieves to perform management work of waking up
worker threads in order to reduce work overhead. Thus when a
thief is unsuccessful in its steal attempt, it performs management
task so as to have some effective work done (in this case for the
BWS algorithm). In order to avoid a case where all thieves are
asleep, a 'watchdog' thief is selected which always remains awake
and appoints a new watchdog in case it is able to successfully
steal resources for a task.

 Based on tests performed with multiple benchmarks on a 8-core
system, BWS outperformed Cilk++ scheduler (with ABP) in terms
of fairness and throughput (11%-33% on average). Due to the well
managed wasteful thieves the context switches being incurred by
BWS are greatly reduced which in turn reduce s the penalty which
is incurred by Cilk++ (reduced by >70%) .

The sleep threshold calibration in BWS is a sensitive parameter
since a large value might cause reduced throughput at reduced
workloads but may increase fairness at higher workloads. An
optimum value for this parameter was found to be between 32 and
256.

When compared with WSGI (work stealing with global
information) where the information about all workers (busy and
thieves) is maintained in a global repository, BWS proves to be
more efficient since local information which is stored in the
watchdog and peer thieves reduces contention. Benchmarks are on
an average 43% slower with WSGI as compared to BWS.

3. AMP SYSTEMS

Scheduling policies aimed at reducing solving problems in AMP
multi-core systems are discussed below

3.1. Lottery Based Scheduling

By using heterogeneous cores with same ISA but different power
and performance characteristics, both power and performance
benefits can be provided. Other methods employ scheduling
decisions based on thread bias which is computer either using
computational intensity or memory intensity. Majority of
scheduling algorithms map computation intensive threads to
bigger cores and some threads might monopolize the bigger cores.
Hence, a case of proportional-share scheduling of threads is
studied to determine performance improvement and energy
savings. Runtime performance monitoring is used to give tickets

Page of 4 6

to threads. This ticket is used to schedule a thread on a big core
based on lottery scheduling.

An asymmetric quad-core x86_64 chip which has individual core
frequency scaling and four cores (one at 3.2GHz and three at
0.8Ghz) is used for validation of proposed techniques. The threads
receive a dynamic number of tickets based on the energy
efficiency ratio between scheduling the thread on a big core vs. on
a small core. A lottery schedules uses this tickets to assign threads
to cores at periodic intervals. The core power consumption for
different workloads is taken into account for making energy-
efficient scheduling decisions. The results show energy saving and
performance improvements (ranging from 12% to 51%) when
compared with biased and fair scheduling schemes used for
heterogeneous systems when workloads taken into consideration
are similar in nature.

However, due to resource unaware nature of policy, performance
variations exist.

3.2. Performance Based Scheduler

The optimal use of heterogeneous multi-core depends on how
well a scheduling policy matches workloads to the respective core
type (big or small). Incorrect scheduling decisions can very well
degrade performance and waste power as well as energy. Memory
intensity along with ILP can be used to determine conditions
based on which scheduling decisions can be made. Performance
Impact Estimation (PIE) model can be used to take these
parameters into a single metric and then map work load to a given
core. Dynamic scheduling using PIE uses CPI stack as well as
data about MLP (memory level parallelism) in order to efficiently
make scheduling decisions. Additionally, shared LLCs which
provide MLP data at low overheads (using lower sampling rates
and PMU) assist in fine grained scheduling of tasks while
accounting for time-varying conditions.

PIE is easily scalable to larger systems based with multiple cores
and outperforms lottery based policy in terms of performance. For
a wide variety of workload mixes PIE consistently achieves
higher speed-up and can also be used to improve multi-threaded
workload performance. PIE also takes fairness into consideration
at certain levels; however tests to validate the same have not been
conducted yet.

3.3. Comprehensive Scheduler

AMP are proposed as an alternative to SMP where the architecture
has two types of cores. The fast cores are complex with high
degree of ILP, higher frequency of operation prefacers and
aggressive branch prediction. The slower cores have simple
pipelines/design, smaller size and lower operating frequencies.
Hence the system usually consists of lesser number of fast and
higher numbers of small cores. When compared with an SMP
system, AMP were found to deliver 60% more performance per
watt.

In an SMP architecture, the resources will consume more power in
case of parallel workloads for a complex system and incur high
performance deficit for sequential workloads in a simple system.
AMP provides a mix of both and hence caters itself as a useful
alternative.

In order to make most of the resources provide by AMP system,
the scheduling policies have to be carefully selected. CAMP
targets reduction in energy cost and improvement in efficiency/
parallelism in AMP systems. A metric namely Utility Factor (UF)
is used to evaluate the energy efficiency and TLP (thread level

parallelism) of a particular application. Decisions of scheduling
are then made using this metric. In case QoS is the goal, UF can
be used as the complementary parameter to ensure efficiency
while maintaining priority as per the QoS guarantee. Since,
CAMP considers both efficiency and TLP; it performs better for a
diverse range of workload when compared with previous AMP
schedulers which target either efficiency or TLP improvement.

Based on the Utility factor of a thread, threads are placed in three
bins i.e. Low, Medium and High. Initially all High utility class
threads are mapped to fast cores. If threads in the high utility class
are more than the number of fast cores then a round robin policy
is adopted. Threads which fall under Low and Medium utility
class are scheduled on slower cores. In case fast cores remain after
mapping High utility classes, then medium class are scheduled on
the fast cores and then low class.

Parallel applications (in the High class) with sequential phases are
assigned to a special class so that they receive the needed boost
using fast cores during the sequential execution period. Based on
system thresholds, the utility thresholds are dynamically adjusted
to have fine grained control on class assignment.

When compared with algorithms such as Parallelism-Aware (PA),
which addresses TLP specialization, Speedup Factor-Driven
(SFD), which addresses efficiency specialization, and round-robin
(RR) for single threaded applications, CAMP and SF perform
better in energy efficiency since PA is unaware of energy
efficiency.

In case of a wide variety of workloads including combinations of
single-threaded and multi-threaded applications, CAMP delivers
performance gains since for sequential phases of all applications,
CAMP initially runs them on fast cores and later degrades them as
per classification. However, PA maps memory intensive
applications to faster cores and parallel applications to slower
cores from beginning and SFD maps parallel applications to faster
cores failing to speedup initial sequential phase of the slower
applications. Hence over a widely varying workload CAMP
performs better compared to schemes concentrating at addressing
only efficiency or TLP without any modifications.

4. COMPARISONS

With multi-cores becoming ubiquitous in computing, concurrent
execution of many applications has become quite popular. This
causes contention for shared resources. Since the on-chip LLC is
at the periphery of resources on the multi-core processor, it is one
of the last avenues to tackle majority of delays before the
application issues a request to the slower main-memory.

In SMP systems CRUISE proves to gain maximum performance
improvement and at the same time maintains energy efficiency. It
does this by using both hardware and software support. Although
hardware changes have been suggested, they are trivial and can be
easily integrated into current systems. Other policies either tackle
performance but are agnostic to lower level scheduling policies or
try to gain maximum energy efficiency and cause performance to
be less than optimal for workloads. HW/SW partitioning policy
requires FPGAs and complex programming to convert high
latency tasks into hardware executions. BWS targets work-
stealing and is majorly aimed at commercial systems with higher
workloads.

In AMP systems the comprehensive scheduler proves to be a
major improvement over previous designs. It considers both
energy efficiency and performance while accelerating application
performance using asymmetric cores; hence it provides better
results for a diverse range of workloads. Previous techniques only

Page of 5 6

solve one of the two problems. Hence their performance suffers
when a mix of workloads with single and multi-threaded
applications is provided.

5. REFERENCES

1. Sergey Zhuravlev, Sergey Blagodurov, and Alexandra

Fedorova. 2010. Addressing shared resource contention in
multicore processors via scheduling. In Proceedings of the
fifteenth edition of ASPLOS on Architectural support for
programming languages and operating systems (ASPLOS
XV). ACM, New York, NY, USA, 129-142.
DOI=10.1145/1736020.1736036 http://doi.acm.org/
10.1145/1736020

2. Andreas Merkel, Jan Stoess, and Frank Bellosa. 2010.
Resource-conscious scheduling for energy efficiency on
multicore processors. In Proceedings of the 5th European
conference on Computer systems (EuroSys '10). ACM, New
York, NY, USA, 153-166. DOI=10.1145/1755913.1755930
http://doi.acm.org/10.1145/1755913.1755930

3. Hassan A. Youness, Abdel-Moniem Wahdan, Mohammed
Hassan, Ashraf Salem, Mohammed Moness, Keishi
Sakanushi, Yoshinori Takeuchi, Masaharu Imai: Efficient
partitioning technique on multiple cores based on optimal
scheduling and mapping algorithm. ISCAS 2010: 3729-3732

4. Vinicius Petrucci , Orlando Loques , Daniel Mossé, Lucky
scheduling for energy-efficient heterogeneous multi-core
systems, Proceedings of the 2012 USENIX conference on
Power-Aware Computing and Systems, p.7-7, October 07,
2012, Hollywood, CA

5. Aamer Jaleel, Hashem H. Najaf-abadi, Samantika
Subramaniam, Simon C. Steely, and Joel Emer. 2012.
CRUISE: cache replacement and utility-aware scheduling. In
Proceedings of the seventeenth international conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS XVII). ACM, New York, NY,
USA, 249-260. DOI=10.1145/2150976.2151003 http://
doi.acm.org/10.1145/2150976.2151003

6. Xiaoning Ding, Kaibo Wang, Phillip B. Gibbons, and
Xiaodong Zhang. 2012. BWS: balanced work stealing for
time-sharing multicores. In Proceedings of the 7th ACM
european conference on Computer Systems (EuroSys '12).
ACM, New York, NY, USA, 365-378.
DOI=10.1145/2168836.2168873 http://doi.acm.org/
10.1145/2168836.2168873

7. Juan Carlos Saez, Manuel Prieto, Alexandra Fedorova, and
Sergey Blagodurov. 2010. A comprehensive scheduler for
asymmetric multicore systems. In Proceedings of the 5th
European conference on Computer systems (EuroSys '10).
ACM, New York, NY, USA, 139-152.
DOI=10.1145/1755913.1755929 http://doi.acm.org/
10.1145/1755913.1755929

8. Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo
Narvaez, and Joel Emer. 2012. Scheduling heterogeneous
multi-cores through Performance Impact Estimation (PIE). In
Proceedings of the 39th Annual International Symposium on
Computer Architecture (ISCA '12). IEEE Computer Society,
Washington, DC, USA, 213-224

9. José A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N.
Patt. 2012. Bottleneck identification and scheduling in
multithreaded applications. In Proceedings of the seventeenth
international conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
XVII). ACM, New York, NY, USA, 223-234.
DOI=10.1145/2150976.2151001 http://doi.acm.org/
10.1145/2150976.2151001

10. Rachata Ausavarungnirun, Kevin Kai-Wei Chang, Lavanya
Subramanian, Gabriel H. Loh, and Onur Mutlu. 2012. Staged
memory scheduling: achieving high performance and
scalability in heterogeneous systems. In Proceedings of the
39th Annual International Symposium on Computer
Architecture (ISCA '12). IEEE Computer Society,
Washington, DC, USA, 416-427.

11. D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting Inter-
Thread Cache Contention on a Chip Multi-Processor
Architecture. In HPCA ’05: Proceedings of the 11th
International Symposium on High-Performance Computer
Architecture, pages 340–351, 2005.

12. Y. Xie and G. Loh. Dynamic Classification of Program
Memory Behaviors in CMPs. In Proc. of CMP-MSI, held in
conjunction with ISCA-35, 2008.

13. R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using
OS Observations to Improve Performance in Multicore
Systems. IEEE Micro, 28(3):54–66, 2008

14. Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis and
Approxima-tion of Optimal Co-Scheduling on Chip
Multiprocessors. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation
Techniques (PACT ’08), pages 220–229, 2008

15. D. Tam, R. Azimi, andM. Stumm. Thread Clustering:
Sharing-Aware Acheduling on SMP-CMP-SMT
Multiprocessors. In Proceedings of the 2nd ACM European
Conference on Computer Systems (EuroSys’07), 2007

16. J. Chang and G. S. Sohi. Cooperative cache partitioning for
chip multiprocessors. ICS-21, 2007

17. A. Jaleel, E. Borch, M. Bhandaru, S. Steely, and J. Emer.
Achieving Non-Inclusive Cache Performance With Inclusive
Caches -- Temporal Locality Aware (TLA) Cache
Management Policies, In MICRO, 2010

18. M. K. Qureshi and Y. Patt. Utility Based Cache Partitioning:
A Low Overhead High-Performance Runtime Mechanism to
Partition Shared Caches. In MICRO-39, 2006 

Page of 6 6

	INTRODUCTION
	SMP SYSTEMS
	Distributed Intensity Scheduler (DI)
	Classification schemes
	Scheduling policies and observations

	Scheduling Aimed at Energy Efficiency
	Policies Requiring Hardware Support
	Effective Hardware Software Partitioning
	Cache replacement and Utility aware scheduling

	Work-Stealing Based Scheduling Policy

	AMP SYSTEMS
	Lottery Based Scheduling
	Performance Based Scheduler
	Comprehensive Scheduler

	COMPARISONS
	REFERENCES

