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ABSTRACT


With the need for higher performance, and barriers such as ILP 
wall, Memory wall and Power wall, multi-core computers have 
found their way into wide variety of applications in both user and 
commercial domain. They offer more computing resources while 
keeping the power considerations in manageable limits. A wide 
variety of implementations exist in multi-core architecture include 
SMP (Symmetric multi-processors) and AMP (Asymmetric multi-
processors) with heterogeneous systems as a subset of AMP. 
Multiple challenges have cropped up due to the shift to concurrent 
programming and widespread adoption of these systems. These 
include shared resource contention, performance challenges, 
energy efficiency, fairness and throughput. This paper compares 
and contrasts recent solutions which have been proposed to 
address these problems. The solutions which have been taken into 
consideration include scheduling and related classification 
schemes, hardware/software partitioning, PMU (performance 
monitoring unit) assisted scheduling and work-stealing.  


Categories and Subject Descriptors

D.4.1 [Operating Systems]: Process Management—Scheduling


General Terms

Algorithms, Management, Measurement, Performance, Design, 
Reliability.


Keywords

Multicore processors, shared resource contention, scheduling, 
Symmetric multicore, Asymmetric multicore, frequency scaling, 
fairness.


1. INTRODUCTION


Multi-cores have long existed, ever since mid-1960s. However 
due to the complexity involved in multi-core programming they 
were largely used by the skilled engineers and scientists. Their 
absence in mainstream systems and the increase in single core 
complexity and component density based on Moore’s law made 
multi-core systems expensive. Hence, they had a limited customer 
base usually targeted at batch processing. 


With the decline in transistor scaling and the hardware 
development hitting ILP wall, memory wall and power wall, there 
was a paradigm shift to multi-core computers. Multi-core offered 
reduced power consumption for perfectly parallelizable 
workloads. However, achieving ideal speedup is affected by 
various factors. Based on the target hardware these solution have 
been classified into two categories: Solutions for SMP systems 
and solutions for AMP systems. 


For SMP systems scheduling is proposed as one of the solutions 
because it needs software changes, hence can be easily integrated 
into current kernels. Implementations of new scheduling policies 
which targets shared resource contention requires two steps: First 
is identification of classification schemes for threads to indicate 
what effect they have on each other due to shared resource 
contention when co-scheduled. Here shared resource includes 
cache, memory controller, memory bus and prefetching hardware. 
Second is to devise a scheduling algorithm using one of the 
classification schemes and demonstrate its performance ("DI 
performs within 2% of optimal") [1]. Scheduling policies also 
have effective impact at improving QoS (Quality of Service). 
Another policy which aims at reducing the energy delay product 
utilizes task activity vectors to classify applications based on 
resource utilization. Accordingly, applications using 
complementary resources are selected and frequency scaling is 
used if scheduling is not able to properly manage the resource 
contention. 


Efficient HW SW partitioning technique has also been proposed 
using scheduling and mapping algorithms. On similar lines 
combination of both hardware and software has been employed in 
solving the shared cache contention problem in multi-core 
systems. The hardware can use modified replacement policies so 
as to allocate cache on need basis for the applications. Since co-
scheduling decisions rely greatly on the underlying shared cache 
replacement policies, the hardware/software approach is a nice 
avenue for improvement. Balanced work stealing (BWS) is also 
among one of the novel solutions which utilizes a work-stealing 
scheduler for improving performance and fairness using two 
methods. Firstly, it tries to balance the cost and benefits of threads 
which are awake where costs are resources consumed when an 
attempt to steal is made and benefits are the available tasks that 
get stolen by the requesting thread. 


Secondly, while making a steal attempt/request the core being 
used by the attempting thread can be borrowed by another 
working thread so that the core is effectively retained by the 
application yet is used for performing work. BWS compared with 
another work-stealing scheduler Cilk++ has been found to deliver 
increased throughput by 12.5% and it reduces unfairness from 
124% to 20% [6].


In case of AMP  systems, the faster cores are usually used to 
speed up sequential phases of applications and the slower cores 
allow gaining energy efficiency for execution of the parallel 
phases. Heterogeneous processor cores can be used with lottery 
based scheduling policies to provide better performance and 

Page  of 1 6

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee.



energy savings over state-of-the-art heterogeneous-aware 
scheduling techniques. This technique focuses mainly on energy 
efficiency. CAMP or the comprehensive scheduler for AMP aims 
at increasing both energy efficiency and throughput/parallelism.


The remainder of this paper is classified into following 
sections: (2) SMP systems and scheduling policies aimed at 
solving problems in these systems, (3) AMP systems and 
corresponding scheduling solutions, (4) Comparison of different 
techniques, (5) Acknowledgements and (6) References. 


2. SMP SYSTEMS


Various scheduling policies aimed at reducing contention, 
increasing performance and energy efficiency are discussed below


2.1. Distributed Intensity Scheduler (DI)


Majority of scheduling policies currently aim at ensuring fairness 
in terms of CPU Time and minimizing the period for which 
individual cores are idle. However, contention for shared 
resources can greatly affect the execution time of individual 
processes. In case of a shared lower-level cache, performance can 
be improved if a better scheduling policy is selected, by as much 
as up to 50%. 


2.1.1. Classification schemes

The algorithm proposed by Jiang et al. [14] was used as a 
reference to compare the performance of classification schemes. 
This algorithm takes con-run degradations as one of the input and 
is guaranteed to find an optimal scheduling assignment. In order 
to evaluate the classifications schemes, an optimal schedule and 
an optimal classification scheme were identified using Jiang's 
method. The average performance degradation for this setup was 
recorded. Then an estimated best schedule was determined using 
Jiang's method and the classification scheme to be evaluated. The 
difference between average performance degradation of optimal 
and the evaluated scheme gave an idea of how the evaluated 
scheme performs. The smaller the difference, the better is the 
performance of the evaluated scheme.


Four classification schemes were studied which use information 
provided in stack distance profile: Stack Distance Competition 
(SDC) [11], Animal Classes [12], Solo Miss Rate [13], and the 
Pain Metric [1]. A stack distance profile provides information 
about the behavior of an application with respect to cache line 
reuse pattern. 


a. SDC: - SDC classification scheme models how two applications 
affect each other’s miss rate while competing for LRU stack 
positions. Performance degradation can be derived from this 
information. 


b. Animal classes: - based on mapping the application to four 
different classes i.e. turtle (shared cache used rarely), sheep (has 
low miss rate, insensitive to the cache associativity allocated), 
rabbit (low miss rate, sensitive to allocated cache associativity) 
and devil (high miss rate, does cache thrashing) the degradation 
when two classes are co scheduled is rated between numbers 0 
and 8. Then the combination with lowest result is selected and 
scheduled.


c. Miss rate: Applications with highest miss rate are scheduled in 
different caches so that they do not affect each other. Since, high 
miss rate implies contention at memory controller, memory bus 
and prefetching hardware.


d. Pain classification scheme: Two parameters i.e. cache 
sensitivity and cache insensitivity are combined to produce Pain 
metric. Sensitivity is how much cache space contention affects an 
application. Insensitivity is how much an application affect others 
by taking the cache space allocated in shared cache. 


2.1.2. Scheduling policies and observations

A cache unaware scheduler might end up picking good and bad 
assignments of processes to individual cores based on their 
respective probabilities. However, contention-aware scheduler can 
deliver QoS, since the algorithm ensures that a bad scheduling 
assignment is not made.


As cores in a multi-processor increase, the probability with which 
imperfect classification schemes get a good mapping decreases. 
Hence, a good classification scheme is a pre-requirement for 
reducing performance degradation in multi-core system. 
Parameters affecting performance degradation include contention 
for shared cache, DRAM controller, front side bus and prefetching 
hardware. The Miss rate takes into account all of these and is 
easiest among the 4 schemes to implement, hence was selected for 
further study. Distributed Intensity algorithm (DI) based on 
centralized sort policy which maps threads to cores based was 
used along with the Solo LLC miss rate to compare performance 
with current Linux scheduling algorithms


The performance of the new scheduling policies when compared 
with default contention-unaware Linux scheduler showed that the 
worst-case performance of individual applications gets reduced 
(by up to 13%) and has lesser variance in competition times. This 
enables the contention-aware scheduling to provide QoS and 
performance isolation.


2.2. Scheduling Aimed at Energy Efficiency


Contention for resources affects both completion time of 
programs and energy efficiency of the system. In order to avoid 
hardware complexities, frequency and voltage selection across all 
cores is majority of systems is kept same. However, frequency and 
voltage are usually determined based on the program in order to 
provide energy efficiency. In case of multi-core systems, 
depending on the combinations of processes running of different 
cores, not all of them run under optimal frequency. Hence, a 
scheduler can be used to alleviate this problem. Tasks with 
different characteristics can reduce resource contention, on the 
other hand tasks with similar characteristics cater themselves to be 
easily scheduled under optimal frequency.


Tests of AMD Opteron 2354 quad-core chip and Core2 Quad 
Q6600 suggested that when memory bound tasks are co-scheduled 
then no major benefit is gained by scaling the frequency for 
optimal operating conditions. For further analysis the paper takes 
EDP (energy delay product i.e. the product of energy spent by the 
processor for a certain task multiplied by its total runtime) as a 
metric of comparison. A run of four SPEC CPU 2006 micro 
benchmarks on Core 2 Quad showed that memory bandwidth 
turns out to be a critical resource when it comes to contention. 
Tests indicate that combining tasks in order to reduce resource 
contention is more important than combining tasks that share a 
common optimal frequency.


In order to analyze resource utilization, task activity vector is used 
where activity vector quantifies the degree at which various 
resources are used by a particular task running at max frequency. 
The values is this vector range between 0 (no utilization) and 1 
(complete utilization). The performance monitoring unit of 
processors provides information about the values for this vector. 
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Resources considered include memory bus, L2 cache and rest of 
the core (resources not shared between cores) A translation vector 
is used to compare the activity vectors recorded at different 
frequencies. 


Based on the activity vector information Vector balancing method 
is proposed for reducing resource contention. The aim is to have 
multiple tasks with different characteristics on each core so that 
the scheduling policy can pick suitable tasks for each course. In 
order to get high variance in the run-queues task migrations are 
performed. Cross node (VM based) migration is also an addition, 
however it will not be considered since it is out of scope for this 
paper. The run queue is kept sorted lazily with low overhead and 
the cores are grouped into pairs of two so as to allow executing 
tasks with complementary resource demands. This scheme can be 
in conflict with schemes applied for I/O bound tasks, hence is not 
feasible for I/O intensive workloads. In situations where the 
scheduling policy cannot reduce contention, frequency scaling is 
employed to reduce EDP. 


The final deployment on a Linux system of the above mentioned 
strategies showed that the activity vector calculations did not have 
any effect on total runtime for the SPEC benchmarks. 
Additionally, co-scheduling tasks which have complementary 
resource requirement reduces contention significantly.


2.3. Policies Requiring Hardware Support

2.3.1. Effective Hardware Software Partitioning

The Decisions regarding partitioning of a system into hardware 
and software directly affect cost/performance characteristics of the 
final design. A partitioning scheme can be used to reduce total 
CPU time taken by a process.


Different tasks are categorized into nodes where each node is a set 
of instructions which should be executed sequentially without pre-
emption. Dependencies are also taken into account to generate a 
task precedence graph. A combination of scheduling algorithm 
and converting tasks taking longest time to be implemented in 
hardware instead of software (using FPGA) is used to provide 
speedup.  This also allows in identifying best architecture for a 
given application.


2.3.2. Cache replacement and Utility aware 
scheduling

Intelligent software scheduling approaches including the ones 
which take miss rate from CPU performance measurement units 
into consideration are one way of solving the LLC contention 
problem. Another way for serving applications better is to monitor 
the heterogeneity in demand for cache and use smart replacement 
techniques in hardware to allocate proportional resources. A 
combined approach can be explored for obtaining better 
performance.


LRU based replacement has been shown to perform poorly when 
it comes to shared caches. To avoid worst application schedule, 
majority of the intelligent scheduling policies avoid co-scheduling 
CPU bound application with memory bound application. 
However, these studies use an LRU managed LLC. When the 
LRU policy is replaced with smart cache replacement policies, the 
performance variations for workloads reduce (<4%) hence the 
benefit of using smart scheduling policies is not significant. 


Effectively the smart replacement policies minimize burden on 
software for reducing resource contention and increasing 
performance. As compared to other policies which use colors, 

animals or miss rates to classify applications according to their 
memory intensity, CRUISE uses four new classes:


CCF (Core cache Fitting): applications which have a working set 
that fits in their private cache. 


LLCT (LLC thrashing): Similar to streaming applications which 
have huge working sets


LLCF (LLC fitting): Need majority of the shared LLC and the 
performance reduces as LLC allotment is decreased. 


LLCFR (LLC friendly): They perform well as the LLC allotted is 
increased however performance degradation is not significant 
even if a major chunk of LLC is not allotted to them.


In order to gather information regarding application cache utility, 
the applications can be periodically paused on a CMP to gather 
information about cache use. However, this policy incurs extra 
performance overhead. Hence a runtime isolated cache estimator 
(RICE) is proposed which monitors cache utilization per 
application based on Set Dueling Monitor (SDM). The SDM 
dedicates few sets of cache to follow a certain policy, and then 
uses the resultant cache misses. Hence, two SDMs are dedicated 
per application and all other applications bypass these cache sets. 


RICE however needs modification in the ISA to enable software 
control. Using this information, a scheduling policy can be 
devised based on the underlying LLC replacement policy. For a 
LRU managed shared LLC the policy follows following rules 
(CRUISE-L):


a. All LLCT applications are mapped on same LLC


b. CCF applications are distributed across LLCs


c. The LLCF applications are co-scheduled along with CCF


d. LLCFR applications are mapped to remaining places.


In case of DRRIP,  a low overhead, high performance shared 
cache replacement policy the scheduling steps are (CRUISE-D):


a. LLCT applications are distributed across all LLCs


b. CCF applications are also distributed across LLCs


c. LLCF and CCF/LLCT applications are co-scheduled


d. LLCFR applications are filled in remaining slots


When compared with random, Distributed intensity and Worst 
application schedule policies, CRUISE significantly reduces 
performance variation. In case when the workload consists of 
mixes with high performance variation, CRUISE frequently 
arrives at an optimal schedule. In both LRU and DRRIP managed 
share caches, the performance variation using CRUISE lies below 
5%. Both CRUISE-D and CRUISE-L are within 1% of the 
optimal assignment schedule (OAS), in case of fairness and the 
performance is similar to OAS when it comes to throughput and 
weighted speedup. It proves to be robust across all metrics. The 
CRUISE policy also proves to be quite scalable as it bridges 
performance variation between OAS and WAS when a 4-core 
system is scaled to 8-core system with proportional increase in 
applications/threads outperforming all other policies taken into 
consideration. However in case of lower workload, both CRUISE 
and DI show degraded performance to within 5% when compared 
with the WAS policy due to the cost of overheads. 


The functioning of RICE was validated by reducing the LLC size 
and analyzing behavior of working sets. It was found that cache 
fitting or friendly applications were changed to cache thrashing or 
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fitting when the cache size was reduced and vice versa. Hence, 
RICE responds to dynamic changes in available LLC size.


CRUISE tackles majority of problems faced by other policies. In 
case of the DI policy, the authors suggest that the contention for 
DRAM controllers and hardware pre-fetchers also account for 
majority of the performance degradation. However, in recent 
processor designs, the pre-fetchers have been made private and 
are located at L2 cache and the DRAM controllers are moved on 
die and are more sophisticated thereby reducing the sharing 
effects in case of a LRU managed cache. Other techniques like 
software cache partitioning technique which allocates a certain 
portion of cache to individual applications is complicated and 
requires intricate changes in the virtual memory policies used by 
the kernel. Software-centric algorithms which sample 
performance data of threads and learn their behavior suffer due to 
dynamic phase changes and their complexity increases with the 
increase in number of threads. Hence, CRUISE is the most 
feasible policy providing scalability and high performance for 
SMP systems.


2.4. Work-Stealing Based Scheduling Policy


An aspect which comes into play in case of multi-programming is 
a certain application spawning threads to make use of multiple-
cores. These threads are then scheduled based on the user-level 
task scheduler. The tasks to be performed by the application are 
distributed across multiple worker threads felicitating the 
concurrent execution of the application. In such cases work 
stealing proves to be quite effective when it comes to reducing 
complexity of parallel programming. However, since an operating 
system does not recognize the tasks of each of the worker threads, 
wasteful threads might get scheduled which cause reduced 
throughput. Additionally, when work stealing schedulers try to 
alleviate this problem by introducing yielding for the wasteful 
threads then this yielding causes loss of cores for the application 
leading to reduced concurrency. 


BWS (Balanced work stealing) tackles this issue by putting 
wasteful threads to sleep based on data derived from OS. It wakes 
up the threads when they are likely to contribute towards 
application progress and allows yielding to another thread of same 
application hence avoiding the application from being blocked for 
a particular core.


In case of work-stealing a user level scheduler assigns tasks to 
multiple worker threads. The workers which process and generate 
tasks are called busy workers. Useful thieves distribute or yield 
when a parallel task needs the processor. Wasteful thieves on the 
other hand waste the resources in their successive work-stealing 
attempts which turn out to be unsuccessful. Time slicing allows 
core to be assigned to individual applications. However, 
throughput depends on ability of an application to completely 
utilize the allocated resources. Static partitioning relies on similar 
application characteristics. Hence, work stealing can prove to be a 
powerful tool which allows several applications to run 
concurrently in a multi-core system. 


Wasteful thieves are a major concern for work-stealing algorithms 
and degrade the performance by 15%-350%. Current work-
stealing algorithms like ABP (proposed by Arora, Blu-mofe, and 
Plaxton), cause unfairness when the thieves which yield are not 
resumed so as to complete their work in time i.e. when they 
transition from being wasteful to useful thieves and reduce 
throughput when the thieves do not yield cores or yield cores but 
are invoked frequently. The OS scheduling policies also affect this 
indeterministic behavior of thief threads.


Based on runs of four benchmarks on 32 core machine it was 
observed that co-scheduling two work stealing applications 
increases throughput when compared with time-slicing 
algorithms. However, an unyielding work-stealing scheduler 
might degrade performance by as much as 600%. Hence in order 
to aid support of work-stealing schedulers, support has to be 
provided from the OS which is one of the implementations in 
BWS. 


BWS prioritizes busy workers and thieves yield to the busy 
workers so that time slice given to a work-stealing application is 
utilized intensively. The stealing costs are controlled by putting to 
sleep/waking thieves. In cases where resources are plenty multiple 
thieves can be woken up to increase efficiency/concurrency of the 
application. The schedulers acquire running status of workers 
from the OS and an additional support which enables the core to 
be transferred to peer workers. With this implementation BWS 
proves to be better than ABP when it comes to fairness, efficiency 
and throughput.


 BWS uses the thieves to perform management work of waking up 
worker threads in order to reduce work overhead. Thus when a 
thief is unsuccessful in its steal attempt, it performs management 
task so as to have some effective work done (in this case for the 
BWS algorithm). In order to avoid a case where all thieves are 
asleep, a 'watchdog' thief is selected which always remains awake 
and appoints a new watchdog in case it is able to successfully 
steal resources for a task.


 Based on tests performed with multiple benchmarks on a 8-core 
system, BWS outperformed Cilk++ scheduler (with ABP) in terms 
of fairness and throughput (11%-33% on average). Due to the well 
managed wasteful thieves the context switches being incurred by 
BWS are greatly reduced which in turn reduce s the penalty which 
is incurred by Cilk++ (reduced by >70%) . 


The sleep threshold calibration in BWS is a sensitive parameter 
since a large value might cause reduced throughput at reduced 
workloads but may increase fairness at higher workloads. An 
optimum value for this parameter was found to be between 32 and 
256. 


When compared with WSGI (work stealing with global 
information) where the information about all workers (busy and 
thieves) is maintained in a global repository, BWS proves to be 
more efficient since local information which is stored in the 
watchdog and peer thieves reduces contention. Benchmarks are on 
an average 43% slower with WSGI as compared to BWS.


3. AMP SYSTEMS


Scheduling policies aimed at reducing solving problems in AMP 
multi-core systems are discussed below


3.1. Lottery Based Scheduling


By using heterogeneous cores with same ISA but different power 
and performance characteristics, both power and performance 
benefits can be provided. Other methods employ scheduling 
decisions based on thread bias which is computer either using 
computational intensity or memory intensity. Majority of 
scheduling algorithms map computation intensive threads to 
bigger cores and some threads might monopolize the bigger cores. 
Hence, a case of proportional-share scheduling of threads is 
studied to determine performance improvement and energy 
savings. Runtime performance monitoring is used to give tickets 
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to threads. This ticket is used to schedule a thread on a big core 
based on lottery scheduling.


An asymmetric quad-core x86_64 chip which has individual core 
frequency scaling and four cores (one at 3.2GHz and three at 
0.8Ghz) is used for validation of proposed techniques. The threads 
receive a dynamic number of tickets based on the energy 
efficiency ratio between scheduling the thread on a big core vs. on 
a small core. A lottery schedules uses this tickets to assign threads 
to cores at periodic intervals. The core power consumption for 
different workloads is taken into account for making energy-
efficient scheduling decisions. The results show energy saving and 
performance improvements (ranging from 12% to 51%) when 
compared with biased and fair scheduling schemes used for 
heterogeneous systems when workloads taken into consideration 
are similar in nature. 


However, due to resource unaware nature of policy, performance 
variations exist.  


3.2. Performance Based Scheduler


The optimal use of heterogeneous multi-core depends on how 
well a scheduling policy matches workloads to the respective core 
type (big or small). Incorrect scheduling decisions can very well 
degrade performance and waste power as well as energy. Memory 
intensity along with ILP can be used to determine conditions 
based on which scheduling decisions can be made. Performance 
Impact Estimation (PIE) model can be used to take these 
parameters into a single metric and then map work load to a given 
core. Dynamic scheduling using PIE uses CPI stack as well as 
data about MLP (memory level parallelism) in order to efficiently 
make scheduling decisions. Additionally, shared LLCs which 
provide MLP data at low overheads (using lower sampling rates 
and PMU) assist in fine grained scheduling of tasks while 
accounting for time-varying conditions.


PIE is easily scalable to larger systems based with multiple cores 
and outperforms lottery based policy in terms of performance. For 
a wide variety of workload mixes PIE consistently achieves 
higher speed-up and can also be used to improve multi-threaded 
workload performance. PIE also takes fairness into consideration 
at certain levels; however tests to validate the same have not been 
conducted yet.


3.3. Comprehensive Scheduler


AMP are proposed as an alternative to SMP where the architecture 
has two types of cores. The fast cores are complex with high 
degree of ILP, higher frequency of operation prefacers and 
aggressive branch prediction. The slower cores have simple 
pipelines/design, smaller size and lower operating frequencies. 
Hence the system usually consists of lesser number of fast and 
higher numbers of small cores. When compared with an SMP 
system, AMP were found to deliver 60% more performance per 
watt.

In an SMP architecture, the resources will consume more power in 
case of parallel workloads for a complex system and incur high 
performance deficit for sequential workloads in a simple system. 
AMP provides a mix of both and hence caters itself as a useful 
alternative.

In order to make most of the resources provide by AMP system, 
the scheduling policies have to be carefully selected. CAMP 
targets reduction in energy cost and improvement in efficiency/
parallelism in AMP systems. A metric namely Utility Factor (UF) 
is used to evaluate the energy efficiency and TLP (thread level 

parallelism) of a particular application. Decisions of scheduling 
are then made using this metric. In case QoS is the goal, UF can 
be used as the complementary parameter to ensure efficiency 
while maintaining priority as per the QoS guarantee. Since, 
CAMP considers both efficiency and TLP; it performs better for a 
diverse range of workload when compared with previous AMP 
schedulers which target either efficiency or TLP improvement.

Based on the Utility factor of a thread, threads are placed in three 
bins i.e. Low, Medium and High. Initially all High utility class 
threads are mapped to fast cores. If threads in the high utility class 
are more than the number of fast cores then a round robin policy 
is adopted. Threads which fall under Low and Medium utility 
class are scheduled on slower cores. In case fast cores remain after 
mapping High utility classes, then medium class are scheduled on 
the fast cores and then low class.

Parallel applications (in the High class) with sequential phases are 
assigned to a special class so that they receive the needed boost 
using fast cores during the sequential execution period. Based on 
system thresholds, the utility thresholds are dynamically adjusted 
to have fine grained control on class assignment.

When compared with algorithms such as Parallelism-Aware (PA), 
which addresses TLP specialization, Speedup Factor-Driven 
(SFD), which addresses efficiency specialization, and round-robin 
(RR) for single threaded applications, CAMP and SF perform 
better in energy efficiency since PA is unaware of energy 
efficiency. 

In case of a wide variety of workloads including combinations of 
single-threaded and multi-threaded applications, CAMP delivers 
performance gains since for sequential phases of all applications, 
CAMP initially runs them on fast cores and later degrades them as 
per classification. However, PA maps memory intensive 
applications to faster cores and parallel applications to slower 
cores from beginning and SFD maps parallel applications to faster 
cores failing to speedup initial sequential phase of the slower 
applications. Hence over a widely varying workload CAMP 
performs better compared to schemes concentrating at addressing 
only efficiency or TLP without any modifications.


4. COMPARISONS


With multi-cores becoming ubiquitous in computing, concurrent 
execution of many applications has become quite popular. This 
causes contention for shared resources. Since the on-chip LLC is 
at the periphery of resources on the multi-core processor, it is one 
of the last avenues to tackle majority of delays before the 
application issues a request to the slower main-memory.


In SMP systems CRUISE proves to gain maximum performance 
improvement and at the same time maintains energy efficiency. It 
does this by using both hardware and software support. Although 
hardware changes have been suggested, they are trivial and can be 
easily integrated into current systems. Other policies either tackle 
performance but are agnostic to lower level scheduling policies or 
try to gain maximum energy efficiency and cause performance to 
be less than optimal for workloads. HW/SW partitioning policy 
requires FPGAs and complex programming to convert high 
latency tasks into hardware executions. BWS targets work-
stealing and is majorly aimed at commercial systems with higher 
workloads.


In AMP systems the comprehensive scheduler proves to be a 
major improvement over previous designs. It considers both 
energy efficiency and performance while accelerating application 
performance using asymmetric cores; hence it provides better 
results for a diverse range of workloads. Previous techniques only 
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solve one of the two problems. Hence their performance suffers 
when a mix of workloads with single and multi-threaded 
applications is provided.
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